Hardware :

  • ESP-32:The ESP32 makes it easy to use the Arduino IDE and the Arduino Wire Language for IoT applications. This ESp32 IoT Module combines Wi-Fi, Bluetooth, and Bluetooth BLE for a variety of diverse applications. This module comes fully-equipped with 2 CPU cores that can be controlled and powered individually, and with an adjustable clock frequency of 80 MHz to 240 MHz. This ESP32 IoT WiFi BLE Module with Integrated USB is designed to fit in all ncd.io IoT products.

  • IoT Long Range Wireless Vibration And Temperature Sensor:The IoT long range wireless vibration and temperature sensor is battery operated and wireless, meaning that current or communication wires need not be pulled to get it up and operating. It tracks the vibration information of your machine constantly and captures and operate hours at full resolution together with other temperature parameters.In this we are using NCD’s long range IoT Industrial wireless vibration and temperature sensor, boasting up to a 2-mile range using a wireless mesh networking architecture.

  • Long Range Wireless Mesh Modem with USB Interface

Software Used:

Library Used:

  • PubSubClient Library
  • Wire.h

Arduino Client for MQTT

  • This library provides a client for doing simple publish/subscribe messaging with a server that supports MQTT

  • For more information about MQTT, visit mqtt.org.

Download

  • The latest version of the library can be downloaded from GitHub

Documentation

  • The library comes with a number of example sketches. See File > Examples > PubSubClient within the Arduino application.Full API Documentation.

Compatible Hardware

The library uses the Arduino Ethernet Client api for interacting with the underlying network hardware. This means it Just Works with a growing number of boards and shields, including:

  • Arduino Ethernet
  • Arduino Ethernet Shield
  • Arduino YUN – use the included YunClient in place of EthernetClient, and be sure to do a Bridge.begin() first
  • Arduino WiFi Shield - if you want to send packets greater than 90 bytes with this shield, enable the MQTT_MAX_TRANSFER_SIZE option in PubSubClient.h.
  • Sparkfun WiFly Shield – when used with this library
  • Intel Galileo/Edison
  • ESP8266
  • ESP32The library cannot currently be used with hardware based on the ENC28J60 chip – such as the Nanode or the Nuelectronics Ethernet Shield. For those, there is an alternative library available.

Wire Library

The Wire library allows you to communicate with I2C devices, often also called "2 wire" or "TWI" (Two Wire Interface),can download from Wire.h.

Basic Usage

  • Wire.begin()Begin using Wire in master mode, where you will initiate and control data transfers. This is the most common use when interfacing with most I2C peripheral chips.
  • Wire.begin(address)Begin using Wire in slave mode, where you will respond at "address" when other I2C masters chips initiate communication.

Transmitting

  • Wire.beginTransmission(address)Start a new transmission to a device at "address". Master mode is used.
  • Wire.write(data)Send data. In master mode, beginTransmission must be called first.
  • Wire.endTransmission()In master mode, this ends the transmission and causes all buffered data to be sent.

Receiving

  • Wire.requestFrom(address, count)Read "count" bytes from a device at "address". Master mode is used.
  • Wire.available() Returns the number of bytes available by calling receive.
  • Wire.read()Receive 1 byte.

Steps to send data to labview vibration and temperature platform using IoT Long Range Wireless Vibration And Temperature Sensor and Long Range Wireless Mesh Modem with USB Interface-

Uploading the code to ESP32 using Arduino IDE:

  • Download and include the PubSubClient Library and Wire.h Library.
  • Compile and upload the ESP32-ThinSpeak.ino code.
  • You must assign your API key , SSID (WiFi Name) and Password of the available network.
  • To verify the connectivity of the device and the data sent, open the serial monitor.If no response is seen, try unplugging your ESP32 and then plugging it again. Make sure the baud rate of the Serial monitor is set to the same one specified in your code 115200.

Serial monitor output.

Making the ThingSpeak work:

  • Create the account on ThigSpeak.
  • Create new channel ,by clicking on Channels.

  • Click on My Channels.

  • Click New Channel .

  • Inside New Channel ,name the channel.

  • Name the Field inside the Channel,Field are the variable in which the data is published.

  • Now save the Channel.

  • Now you can find your Api keys on the dashboard. Go to the tap on the homepage and find your 'Write Api Key' which must be updated before uploading the code to ESP32.

  • Once Channel is created you would be able to view your temperature and vibration data in private view with Fields you created inside the Channel.

  • To plot a graph between different vibration data ,you can use MATLAB Visualization.
  • For this go to App ,Click on MATLAB Visualization.

  • Inside it select Custom, in this we have select create 2-D line plots with y-axes on both left and right side.Now click create.

  • MATLAB code will be autogenerated as you create visualization but you have to edit field id, read channel id,can check the following figure.
  • Than save and run the code.
  • You would see the plot.

OUTPUT

Create an IFTTT Applet

  • IFTTT is a web service that lets you create applets that act in response to another action. You can use the IFTTT Webhooks service to create web requests to trigger an action. The incoming action is an HTTP request to the web server, and the outgoing action is an email message.
  • First create an IFTTT account.
  • Create an applet. Select My Applets.

  • Click the New Applet button.

  • Select the input action. Click the word this.

  • Click the Webhooks service. Enter Webhooks in the search field. Select the Webhooks.

  • Choose a trigger.

  • Complete the trigger fields. After you select Webhooks as the trigger, click the Receive a web request box to continue. Enter an event name.

  • Create trigger.

  • Now the trigger is created , for resulting action click That.

  • Enter email in the search bar, and select the Email box.

  • Now choose action.Select the Send me an email box and then enter the message information.

  • Retrieve your Webhooks trigger information. Select My Applets , Services and search for Webhooks. Click Webhooks and Documentation button. You see your key and the format for sending a request. Enter the event name. The event name for this example is VibrationAndTempData.You can test the service using the test button or by pasting the URL into your browser.

Create a MATLAB Analysis

You can use the result of your analysis to trigger web requests, such as writing a trigger to IFTTT.



  • Click Apps , MATLAB Analysis and select New.
  • Select Trigger Email from IFTTT in the Examples section. The code below is prepopulated in your MATLAB analysis window.
  • Name your analysis and modify the code.
  • Save your MATLAB Analysis.

Create a Time Control to Run Your Analysis

Evaluate your ThingSpeak channel data and trigger other events.

  • Click Apps,TimeControl, and then click New TimeControl.

  • Save your TimeControl.

OUTPUT

  • At last Mail alert is created.