Close
0%
0%

MSP430 Breadboard Audio Spectrum Analyser

A very simple and small audio spectrum analyzer / music visualizer built on a mini breadboard. MSP430 MCU with under 4k firmware

Similar projects worth following
This project is microphone based and require minimal external components. 2 x LR44 coin cells are used so that I can have the whole structure working in the confines of a 170 tie-point mini breadboard.
ADC10, TimerA interrupt LPM wakeup, TimerA PWM like output, button use, integer arithmetic are used and demonstrated.

Features:

8 bit integer FFT
16 samples at 500Hz separation
shows 8 amplitudes of 1K, 1.5K, 2K, 3K, 4K, 5K, 6K, 7.5K non-linear
partial logarithm map to show amplitudes, limited as resolution has been reduced for 8 bit FFT
TLC272 one stage mic pre-amp at 100x times 100x gain (you can experience w/ 2 stages)
menu selectable optional Hamming window
menu adjust 4 levels brightness
menu adjust 8 levels sample rate / response time
2 x LR44 coin cell powered "on board"



Parts / Bill of Materials

This is what's needed for this project

  • MSP430G2452 (the extra chip from TI Launchpad G2, or any 4K 20 pin MSP430G series MCU)
  • a 170 tie-point mini breadboard or perf board for pre-amp construction
  • a TLC272 Dual op-amp
  • mini electret microphone
  • 47k (pull-up), 100k, 2 x 10k, 1k resistors
  • 1 x 0.1uF
  • jumper wires
  • double row male pin header to be used for battery holder
  • 2 x LR44 coin cell battery

Schematic

MSP430G2553 or similar, need 4K Flash

Application Notes

  • Short key press in display mode cycles through no dot, one dot, 2 dots, and 3 dots display.
  • Long press enters setup mode, subsequent long press rotates thru menu.
  • Menu items cycles thru 'Hamming Window Option', 'Dimmer', 'Sampling / Refresh Rate'.
  • In 'Hamming Window' setup mode, short presses cycles through no hamming, hamming 1, hamming 2, hamming 3, long press confirms setting.
  • In 'Dimmer' setup mode, short presses cycles through available brightness levels from 0 to 3, long press confirms setting.
  • In 'Sampling / Refresh rate' setup mode, short presses cycles through the available refresh rates from 0 to 7, 0 means no delay, long press confirms setting.
  • Led segment multiplexing includes time delays to compensate for brightness differences for individual rows.

LED Driving

The LED matrix is of 8 x 8 elements. They are driven by 15 GPIO pins. They are multiplexed w/ 8 rows and 8 column scheme. Since there are only 15 pins after we use 1 pin for ADC input, the multiplexing has row 1 and column 0 sharing a single pin. This means that the particular LED on row 1 and column 0 cannot be lit. This is a compromise as there are just not enough GPIO pins to drive all LED elements.

Sound Capture

Sound is capture via the on board condenser microphone on the breadboard. As microphone signals are small, we need to amplify it to a level that the msp430 ADC10 can use w/ a reasonable resolution. I had used a two-stage op-amp amplifier for this purpose.


The op-amp amplifier is consist of two stages, each w/ a about 100x gain. I had adopt the TLC272 as it is also a very common part and it works w/ 3V. The gain bandwidth being about 1.7Mhz means that for our gain of 100x, we can only guarantee it would work nicely (i.e. maintain the gain we want) under 17Khz. (1.7Mhz / 100).


Originally I intend to make this spectrum analyzer measure up to 16-20Khz, but in the end I found about 8Khz is good enough to show music. This can be changed by replacing the LM358 w/ something of audio-rated and changing the sampling rate. Just look for the gain bandwidth of the op-amps you choose.

Sampling and FFT

The FFT function used is the "fix_fft.c" code that many projects had adopted, it has been floating around in the internet for some years. I had tried a 16 bit version and a 8 bit version. Eventually I settled for the 8 bit version as for my purpose, I did not see a major advance on the 16 bit version.


I do not have a good understanding of the FFT mechanism except that it's a time domain to frequency domain conversion. That means the rate (time) of the sound samples, after feeding to the FFT calculation function, will affect the frequency of the amplitude I am getting as a result. So by adjusting the rate to sample sound, I can determine the frequency band as the result.


TimerA 0 CCR0 is used to keep the sampling time. We first determine the counts we need to achieve the band frequency (corresponds to our DCO clock rate of 16Mhz). i.e. TA0CCR0 set to (8000/(BAND_FREQ_KHZ*2))-1; where BAND_FREQ_KHZ is 8 for me. It can be changed if you got a better op-amp and / or wants it be different.

Frequency Bands and Amplitude Scaling

The firmware process 16 bands at one sweep, and the capture timing produces 500Hz separation between these banks. The LED matrix is of 8 columns and will only display 8 bands / amplitudes. Instead of displaying one every two bands, a non-linear frequency band list is used to show the more dynamic frequency bands (in terms of music). The list is of 500Hz gaps at the...
Read more »

  • 1
    Step 1

    Breadboard Layout

    Source code

    Source code usually resides on my github repositories.
    For this particular project, the single C source file nfft.c is bundled in my breadboard collections repository. You just need nfft.c

    Building the project

    You can start w/ the breadboard layout. And it's ASCII art so may not be very clear. You can pair w/ the photo below to identify all connections.


    The battery holder is made from a section of double male header pins. Use a pair of long nose pliers to pull out the middle pins, then bent the end pins to fit the two LR44 cells properly. Since there is no power switch, I use a thin piece of plastic tab to break the connection between the LR44s when not in use.




    I am using mps430-gcc to compile the firmware but it should go well with TI CCS. You can avoid all the trouble of installing IDEs or compilers by going to TI CCS cloud, which is a web based IDE. I will even download the firmware to your target device.


    msp430--gcc -Os -Wall -ffunction-sections -fdata-sections -fno-inline-small-functions -Wl,-Map=nfft.map,--cref -Wl,--relax -Wl,--gc-sections -I/cygdrive/c/Users/chrisc/Desktop/energia-0101E0016/hardware/msp430/cores/msp430 -mmcu=msp430g2553 -o nfft.elf nfft.c


    I am using a TI Launchpad G2 as a programmer to program the MCU. I am not covering the installation / use of the tools as there are well written tutorials to cover that.

View all instructions

Enjoy this project?

Share

Discussions

Alex wrote 06/25/2017 at 09:20 point

You can charlieplex the display w/ 9 pins

  Are you sure? yes | no

K.C. Lee wrote 12/30/2015 at 23:05 point

One thing I notice is that the opamp pin 3 is biased around 0V, so you'll only see a half wave clipping of the input waveform.  The FFT won't be correct. 

Normally, you bias it at half rail (by adding 10K pull up making a voltage divider at pin 3)  thus the ADC sees the full waveform.  I am hoping this is a typo, but that doesn't seem to be the case for your breadboard.

  Are you sure? yes | no

Chris Chung wrote 12/31/2015 at 00:08 point

you have very sharp eyes.  You are right, the schematic missed a 10k resistor on pin 3 of the Op-Amp. I will correct it. My bad. They are indeed on the layout and photo. There are two resistors from pin 3, one is standing up connecting to pin 4 gnd, and the other is lying down tie to V+ w/ pin 1 of the MCU.

/EDIT schematic corrected and layout improved. Can't trust vi to design schematics.

  Are you sure? yes | no

zakqwy wrote 12/30/2015 at 16:31 point

This is really impressive--great project!

  Are you sure? yes | no

Similar Projects

Does this project spark your interest?

Become a member to follow this project and never miss any updates